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ABSTRACT 
Mutations of alleles  at  microsatellite  loci  tend to result  in  alleles with repeat  scores  similar to those 

of the  alleles  from  which  they  were  derived.  Therefore  the  difference in repeat  score  between  alleles 
carries  information  about  the  amount of time that has  passed  since  they shared a common ancestral 
allele.  This  information is ignored by genetic  distances  based  on the infinite  alleles  model.  Here we 
develop a genetic  distance  based  on  the  stepwise  mutation  model  that  includes  allelic  repeat  score. We 
adapt  earlier  treatments of the stepwise  mutation  model  to  show  analytically  that  the  expectation of this 
distance is a linear  function of time. We then use computer  simulations to evaluate  the  overall  reliability 
of  this  distance and to  compare  it with allele  sharing  and  Nei’s  distance. We find  that no distance  is 
uniformly  superior  for  all  purposes,  but  that  for  phylogenetic  reconstruction of taxa that  are  sufficiently 
diverged, our new  distance ispreferable. 

S TUDIES  of phylogenetic relationships among very 
closely related species are  often  hampered by a lack 

of variation. For example,  in  their study of mitochon- 
drial DNA variation in  the Lake Victoria flock of  East 
African cichlids, MEYER et al. ( 1990) found  no variation 
in a 363-bp region of the cytochrome b gene  and  an 
average of two or three substitutions separating species 
in 440 bp of the  control  region. The estimation of rela- 
tionships among  such closely related taxa, or  the estima- 
tion of relationships within a species, would be easier 
if faster evolving characters were used. Because  of their 
exceptionally high  mutation  rate, microsatellites may 
prove more informative for working out relationships 
among  such closely related species, as  well  as among 
subpopulations of a single species ( BOWCOCK et al. 
1994). 

Microsatellites are a special class  of tandem  repeat 
loci that involve a base motif of 1-6 bp repeated up to - 100 times ( TAUTZ 1993). The few tandem  repeat loci 
that have been  studied show exceptionally high muta- 
tion rates, with minimal rates as high as lo-’ (JEFFREY~ 
et al. 1988; KELLY et al. 1991 ) or 10 -‘ ( LEVINSON and 
GUTMAN 1987; HENDERSON and PETES 1992). Because 
of this and  the generally large number of alleles avail- 
able, these loci  have been extremely useful in DNA 
fingerprinting (JEFFREB and PENA 1993; QUELLER et al. 
1993), linkage analysis (TODD et al. 1991; DIETRICH et 
al. 1992) and  more recently in the  reconstruction  of 
human phylogeny ( BOWCOCK et al. 1994). 

Although microsatellites may prove to be more useful 
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than classical polymorphisms (or sequence data)  for 
assessing population  structure and  determining  the re- 
lationships among very  closely related species, they may 
be less informative for  more distantly related taxa. This 
is because the  range of variation in number of repeats, 
while large, is ultimately restricted (BOWCOCK et al. 
1994). Therefore, after sufficient time has passed, any 
distance applied to these loci will reach  a maximal 
value. 

Although  a large number of evolutionary distances 
could conceivably be applied to microsatellites (see be- 
low),  there has been relatively little theoretical evalua- 
tion of inferences and their reliability (but see CHAKRA- 
BORTY and JIN 1993). Furthermore, alleles at some of 
these loci are  thought to evolve  by a stepwise mutation 
process, in which an allele mutates up  or down by a 
small number of repeats ( SCHLOTTERER and TAUTZ 
1992). Therefore, estimators of population  parameters 
based on  the infinite-alleles model,  for  example,  are 
unlikely to apply to microsatellite loci. Although this 
stepwise mutation  model is consistent with the distribu- 
tion of alleles at microsatellite loci ( SHRIVER et al. 1993; 
VALDES et al. 1993), it is probably not applicable to 
minisatellite loci ( SHRIVER et al. 1993). Furthermore, 
DI RIENZO et al. (1994) provide evidence that  a strict 
(single-step) stepwise mutation  model may not be suf- 
ficient to account  for allele frequency distributions at 
microsatellite loci. 

In this paper we first derive a distance measure that 
is linear with time when applied  to loci undergoing  a 
strict stepwise mutation process with no constraint on 
allele size and  then use computer simulations to evalu- 
ate  the reliability of this and  other distances. We con- 
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sider both  the reliability  of phylogenetic reconstruction 
and  the reliability of inferences  about  the  populations 
to which individuals belong. 

A LINEAR GENETIC DISTANCE 
FOR MICROSATELLITES 

Here we adapt  earlier  treatments of the stepwise mu- 
tation model to obtain  an evolutionary distance whose 
expectation is linear with time. The reliability of an 
evolutionary distance depends  both  on its expectation 
and variance, but  a  linear expectation is desirable if it 
does  not  entail  too large an increase in the variance. 
OHTA and KIMURA’S (1973) stepwise mutation  model 
was originally applied to changes in the  charge state of 
proteins as inferred from electrophoretic mobility. 
More detailed mathematical and statistical  analyses of 
this model,  including  the possibility of  two-step muta- 
tions, were made by MORAN ( 1975), WEHRHAHN 
(1975), BROWN et al. (1975), WEIR et al. (1976)  and 
others. 

We consider here only the strict stepwise mutation 
model, in which an allele with i repeats mutates to each 
of i - 1 and i + 1 repeats with probability p / 2 .  Assume 
a  population of N diploid individuals. MORAN ( 1975) 
showed that with multinomial sampling, the probability 
distribution of n, ( t )  , the  number of gametes carrying 
an allele with i repeats  at time t ,  does not converge as 
t grows large. Similarly, the  mean  number of repeats, 
( 2 N )  X, ini ( t )  , does not converge (although  the ex- 
pected value of this mean does not change with time). 
The variance in repeat  number, given the initial condi- 
tions, however, does converge. Thus,  although  the aver- 
age of the  number of repeats never reaches an equilib- 
rium value, the  “cloud”  around  the  mean  retains 
constant variance as the mean position wanders. MORAN 
( 1975 ) also  showed that  the  random variables C, ( t )  = 
( 2 N )  -‘ Z8 nj ( t )  nL+k( t )  converge. For example, E [  C,] 
approaches (1 + 28) where 8 = 4Np, a result also 
derived by OHTA and KIMURA (1973). Its reciprocal is 
the effective number of alleles. 

If D,, is defined as the average squared  difference  in 
repeat  numbers  for two alleles drawn from  the same 
population,  then  direct application of MORAN’S (1975) 
results yields the limiting expectation, E ( Do) = 2 (2N 
- 1 ) p. Similarly, define Dl as the average squared dif- 
ference in repeat  numbers  for two alleles drawn one 
each from different  populations isolated T generations 
in the past. For convenience we  will refer to a distance 
based on D, as the average squared distance. In  the 
APPENDIX we show that  the expectation of Dl is a  linear 
function of T .  Specifically, 

E[D1 ( T ) ]  = 2 ( 2 N -  1 ) p  -t T ~ P .  (1) 

SLATKIN ( 1995) has also derived very similar expecta- 
tions using coalescent theory. He  found  that  the aver- 

age squared difference between alleles is ZpoiT, where 
t 1s the  expected coalescence time between the alleles, 
p is the  mutation  rate and CT; is the variance of the 
distribution of mutations. Within a single population 7 
is 2N (HUDSON 1990). This gives E (  Do)  = 4Np for  the 
strict stepwise mutation model. The expected coales- 
cence time for alleles drawn from each of two popula- 
tions separated T generations ago is 2N + T ( SLATKIN 
1995), from which E ( D l  ) may be derived. These results 
agree with those derived above upon substitution of 2N 
for 2N - 1. Note that Slatkin’s analysis  allows mutations 
of more  than one  repeat  unit in the stepwise mutation 
model. 

- .  

INFERENCES BASED ON VARIATION 
AT MICROSATELLITE LOCI 

Estimation of D,: If it is known a pn‘ori to which 
population each individual belongs, the phylogenetic 
relationships among  the  populations can be inferred 
using an estimate of Dl based on  the sampled individu- 
als. An obvious estimator of Dl can be written in terms 
of the  repeat scores of  two sampled alleles i, i’. Namely, 

&, = ( i  - i ’ ) 2 .  ( 2 )  

It is  easy to see that  the average (a) of A between 
all alleles sampled, one from each population, is an 
unbiased estimator of E [ Dl 3 . Denote E, as the expecta- 
tion under  random sampling from the two populations, 
then  the expectation of ( A )  is E,,[ A ]  = E,\ E, C,, ( i  - 
i ’ )  ‘ JJ , ,  where the sum is  over  all i ,   i ’ ,  andJ,  J f  are, 
respectively, the  frequencies of alleles i and i’ in the 
samples from  the first and  the second population.  Thus, 
because sampling is independent in the two popula- 
tions, we have &,[A] = X i  C,, ( i  - i ’ ) 2 E , [ J ] E , [ J f ]  = 
Xi E,, ( i  - i’) ‘F,Er  = Dl where F, ,  FL, are, respectively, 
the  parametric  frequencies of alleles i and i’ in the first 
and second population.  Therefore, is an unbiased 
estimator of D, . Thus,  the expectation of A should  be 
a  linear  function of the time since the  populations were 
isolated. 

Phylogeny reconstruction: We confirmed  the linear- 
ity  of Li using computer simulation and also compared 
its behavior with  two other distances: allele sharing 
(D,4s), which has recently been used to infer  human 
phylogenetic relationships ( BOWCOCK et al. 1994) , and 
Nei’s distance ( NEI 1972) , denoted In Figure 1 the 
mean behaviors of a, DAS and DS are  compared. The 
figure  reports  the results of 100 independent simula- 
tions, all using the same parameters ( N ,  p )  . For conve- 
nience we  will refer  to  the  generation time in compar- 
ing  the behavior of the distances, but it should be noted 
that such references  are specific to the particular values 
of N and p used in the simulation. Notice that  after 
sufficient time has passed (here about 1000 genera- 
tions), both DAs and D,s are  beginning to asymptote, 
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FIGURE 1.-Means and variances of the distances as a  function of time. To determine  the mean of the distance estimates as 
a function of time, we started with two identical  populations with an equilibrium variance of repeat  number. This  equilibrium 
was reached by iteration. We simulated the  independent evolution of these  populations for 2500 generations. The haploid 
population size of each taxon was 200 and  an allele in  state i mutated  to state i + 1 and i - 1 with probability 0.0005 each psr 
generation.  The  next  generation was formed by random sampling of the previous generation. We calculated  each  distance (A ,  
DAs, DS) every 100 generations. D,4.y was calculated based directly on  the haploid  populations as 1 - (the average number of 
shared  alleles).  That is, DAs = 1 - (1/2N) -‘ Z, Z: I( i, 2 ’ )  , where the first and second sums are over all alleles in the first and 
second  population,  and I (  i, i ‘ )  is an  indicator variable that equals 1 if the alleles are  the same and zero if they are  not.  The 
formula  for A is given in the text, and  the  fcrmula  for D,s (Nei’s  “standard”  distance) can  be found in NEI ( 1972). Figure 1, 
A-C show, respectively, the average values of A, D,s and DAs among 100 independent simulations. Figure 1D  shows the coefficients 
of variation for  the  three measures. 

but A remains  linear. A log transformation of DAs im- 
proves its linearity only slightly, making it similar to D,l.. 
Thus, we  will not consider this further  here. 

Because the variance of an estimator also influences 
its performance, we estimated the coefficients of varia- 
tion of the distances (Figure ID)  . Notice that  the coef- 
ficient of variation of DA.5 is  always smaller than  that of 

and D,$. Thus, DA,yis the superior distance with respect 

to variance but  inferior with respect to expectation. 
One criterion  that can be used to determine which 
distance is superior is to compare  the slope of the mean 
to the  standard deviation at each point in time ( TAJIMA 
and TAKEZM 1994). This shows that A is superior after - 100 generations (data  not  shown) . Trees  that  include 
more distantly related taxa, therefore,  should  tend to 
be  more accurately reconstructed by A. 
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FIGURE 2.-Reliability  of the distances  in  recovering the 
correct  phylogeny.  To  test how the two distance  measures 
influence  the  reliability of phylogenetic  reconstruction, we 
simulated  the  stepwise  mutation  process  along a three-taxon 
tree of variable  length  and  inferred  the  phylogenetic  relation- 
ship  among  the  taxa at the  end of the  simulation  using the 
UPGMA algorithm with each  distance  estimate.  The total 
length of the  tree  varied  from 50 to 4400 generations,  the 
haploid  population  size of each taxon was 200, and  the num- 
ber of loci was 15. The  single  speciation  event  occurred  at 
the  exact  midpoint of the  tree. We ran 400 independent simu- 
lations  along  each of the  trees.  The curves represent  the  num- 
ber of times out of 400 that  the correct topology  was inferred. 

It is important to determine  the  expected difference 
in performance between DA,y and for different types 
of trees. We compared  the overall  reliability  of DAS and 
A by simulating evolution along a three-taxon tree of 
variable length. Figure 2 shows that for trees of a total 
length  shorter  than -300 generations, DAs reconstructs 
phylogenies more accurately than A. From -500 gener- 
ations on, however, A is  progressively more reliable 
than DAS. 

Note from Equation 1 that, except for a  constant 
factor independent of time, A is not a function of the 
population size. Therefore, unlike distances such as FsT 

that measure the differentiation caused by sampling 
and  not  mutation,  the  appropriate measure of  time for 
A is p r ,  not Nr. 

Revealing  cryptic  population  structure: For some 
data sets it may not be possible to determine member- 
ship of individuals in populations before genetic analy- 
sis  is carried out. For example, we might be interested 
in testing whether a population that is not obviously 
partitioned  into isolated subgroups is in fact genetically 
structured because of behavior (e.g., BOWEN et al. 1993) 
or because of recent  admixture  among  a set of pre- 
viously distinct populations (e.g., BOWCOCK et al. 1994) . 

When the  proper assignment of individuals to popu- 
lations is not known, the mean squared differences 
among alleles  in pairs of individuals can be split into 

two components, giving information about D, and Do. 
Let the alleles in one individual be i l ,  i2 and those in 
the  other be jl , j 2 .  The total squared difference among 
the  four alleles  in these two individuals is V,. = 2 ( i l  - 
i ~ ) ~  + 2 ( j 1  - j 2 ) '  + ( j 1  + j 2  - il - i2)'. The within- 
and between-individual components of this sum of 
squares are ( i l  - i 2 ) 2  + (jl - j 2 ) '  and ( i ,  - j l ) 2  + 
( i ,  - j 2 )  * + ( 2 2  - j , )  + ( i2  - j ,) ', respectively. The 
within-individual component is an estimate of Do (al- 
though  not unbiased), because alleles  within an indi- 
vidual must come from  the same population  (ignoring 
admixture) . At a single locus there is a total of N (total 
population size) observations that can be used to esti- 
mate Do. These may not all estimate the same value  of 
Do, however, because the different subpopulations may 
have different population sizes. 

The between-individual component of the sum of 
squares will reflect either Do or D l ,  depending  on 
whether  the two individuals come from the same or 
different populations. A matrix of these between-indi- 
vidual squared differences, therefore, will have ele- 
ments each of which is an estimate of either Do or Dl. 
If these estimates are sufficiently different, a clustering 
program will group individuals into their correct popu- 
lations. This is the basis for the  approach taken by Bow- 
COCK et al. (1994), who used a distance measure based 
on the  proportion of shared alleles  between individuals 
(see also STEPHENS et al. 1992; CHAKRABORTY and JIN 

1993). They found  that trees of individuals based on 
this distance are  structured  into taxonomic units  that 
correspond well  with the geographic origins of the indi- 
viduals. This suggests that microsatellite loci can be 
used to assign individuals to the populations from 
which  they come. 

We simulated evolution on a three-taxon tree to de- 
termine whether & or DAS more accurately assigns indi- 
viduals to their  correct populations. Figure 3 shows that 
over  all trees evaluated DAS makes  this assignment more 
accurately. Because A is more accurate over long peri- 
ods of time, this is at first  puzzling. A possible explana- 
tion may involve the  method of assignment of individu- 
als to populations. Denote by Dw, the  expected value 
of either distance for two individuals drawn from  the 
same population  and by DB, the same for individuals 
drawn from different populations. ( I f  there  are  more 
than two subpopulations there will be a series of D i s ,  
one for each pair of populations.) For the individuals 
to be placed into taxonomic groups  corresponding to 
the populations from which  they come, it is necessary 
and sufficient that Dn be distinguishable from Dw It 
is not necessary that any of the different values of DR 
(representing individuals drawn from different pairs of 
populations)  be distinguishable. Therefore,  the fact 
that DAS asymptotes more quickly than Dl does  not inter- 
fere with the assignment of individuals to populations, 
and its greater precision (lower variance) makes it the 
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FIGURE 3.-Reliability of assignment of individuals to  popu- 
lations. To test how well and allele sharing assign individu- 
als to populations, we simulated evolution along  a  three-taxon 
tree as described above but with  75 haploid individuals of 
each  taxon. The trees ranged in length  from 100 to 600 gener- 
ations, and 100 replications were run  for each  tree  length. At 
the  end of the  simulation, we assumed that  the assignment 
of indiziduais to populations was unknown. We then used 
either A or allele sharing (see  text) to build a  tree of individu- 
als. The structure of this tree was then studied, and the aver- 
age number of individuals incorrectly assigned (out of 225) 
among  the 100 replications was calculated. 

superior distance for this purpose.  Of  course,  the ar- 
rangement of the  populations  that results from DAs may 
be incorrect,  but individuals coming  from  the same 
population will tend to cluster near  one  another regard- 
less  of the  arrangement of the  populations within the 
tree. 

PRACTICAL CONSIDERATIONS 

Constraints on the maximum number of re- 
peats: The  treatment above assumed that alleles can 
mutate  to arbitrarily large or small repeat scores. In 
reality the  number of possible repeat scores is restricted, 
and several lines of evidence suggest that this limit is 
fairly strict. BOWCOCK et al. (1994)  found  that  the vari- 
ance in repeat score is approximately the same within 
humans  and within primates. If there were no restric- 
tion, one would expect  the  greater evolutionary dis- 
tance among primates to lead to much  greater differ- 
ences in repeat scores. Additionally, of the 20 loci  typed 
in humans  and  the 10  also  typed in the  other primates 
(unpublished data), all but  one has a maximal repeat 
score under 100. The demonstrated  connection be- 
tween large repeat scores and hypermutability ( KUNKEL 
1993; STRAND et al. 1993) suggests a mechanism for  the 
constraint on repeat score. 

The  length of time during which Dl is (approxi- 

mately) linear as a  function of the maximum number 
of alleles possible, R (which is  also the  range of the 
repeat score ) , can be  approximated as  follows.  Assume 
that each of two isolated populations has only one type 
of allele. Then, it is possible to calculate the average 
value of Dl after the isolated populations have reached 
maximal divergence. In this case the  repeat score of 
the single allele in each population is randomly drawn 
from the possible R values. Therefore,  the  joint proba- 
bility distribution  for  the process of sampling an allele 
in state i from one population and an allele in state j 
from  the other population is  given by p (  i, j )  = 1 / R'. 
The maximum divergence possible  as a  function of R, 
denoted 6 (  R ) ,  is the  expectation of ( i  - j )  and is 
given by 

Substituting 6( R )  for Dl ( t )  in Equation 1 and solving 
for T yields the  amount of time it takes Dl to reach the 
value it takes at maximal divergence. This time should 
approximate  the  duration of linearity of Dl and is  given 
bY 

Figure 4 shows the results of computer simulations 
similar to those shown in Figure 1, except  that  the total 
number of alleles possible is restricted to 6 (Figure 4 A )  
and 10 (Figure 4B).  First, note  that asymptotes at 
-6 and 17 for  the respective simulations. This com- 
pares nicely  with predictions of 19( 6)  = 5.8 and 6( 10) 
= 16.3. Thus,  the  approximation  for  the maximum 
value  of Dl given in Equation 3  appears to be quite 
accurate under these conditions. 

In Figure 4 a hyperbolic function has been fitted to 
the simulation results. We take the  point  at which lin- 
earity is lost to  be that  point  on  the hyperbola where a 
tangent has slope halfway between the initial slope 
(based  on Equation 1 ) and  the final value (zero) . This 
method  produces estimates of 1710 and 5900 for  the 
approximate times that  the simulated values  of 
stopped  their  linear increase with time, somewhat lower 
than  predicted by Equation  4 (2800 and 8100, respec- 
tively). This is probably due to the fact that  the simula- 
tion reports  the average values  of a  nonlinear  function, 
from which we  wish to infer  the value  of  its argument 
(time). Because the average value of a  nonlinear func- 
tion is not  the same as the  function  applied to the 
average of  its argument,  the  method used in Figure 4 
provides a biased estimate of the time at which the slope 
is  halfway between its initial and final values. Nonethe- 
less,  it appears  that Equation 4 provides a useful approx- 
imation of the  range of linearity of D l .  For comparison, 
Figure 4C shows the dynamic behavior of DAS for R = 
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FIGURE 4.-Duration  of linearity of Dl.  To  determine  the  duration of linearity of D, , we ran simulations identical to those 
described in Figure 1 ,  except that  the allelic range was restricted to 6 ( A )  or 10 ( B )  . The points show the results of simulated 
evolution in a single population with 160 loci. (The results are nearly identical if fewer  loci are used in replicate populations). 
The curve is the best-fitting hyperbola of the form a - b/  ( c  + d t )  , where 1 is the  number of generations, and a,  b, 6, dare the 
parameters to be fit. The  tangent to the hyperbola is a line with slope  equal  to  (initial  slope - final slope) /2 .  The value of 
time at this point  on  the hyperbola is the estimate of the  length of time during which linearity is maintained (see  text). C shows 
the behavior of D,,% for  each of the conditions. The  higher curve (broken) is for 10 alleles. 

6 and R = 10. Unfortunately, because we do not have a 
dynamic for DAs, we cannot use the  approach described 
above to estimate the time at which DAS reaches its as- 
ymptotic  value. It is important  to  note, however, that 
for R = 10, DAs clearly  asymptotes earlier than  does D l .  
Thus, as long as R is not very small, we can conclude 
that DAS asymptotes well before Dl.  

Because the  duration of linearity is expected to grow 
as the square of R ,  loci  with  slightly larger values  of R 
may be informative over much longer times than those 

with smaller values. Table 1 shows approximate ob- 
served ranges of the 30 loci  typed  in humans (unpub- 
lished data)  and the predicted duration of linearity 
based on those ranges. The values  must be regarded 
only  as approximate because the primers generally do 
not exactly enclose bases making up the tandem repeat 
but include a variable number of nonrepeated bases on 
either side of the microsatellite. 

Two ranges were calculated for each locus. The first 
is  simply the difference between the maximal and mini- 
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TABLE 1 

Estimated  range of linearity of 30 microstatellite 
loci typed in humans 

Expected duration 
Locus Range" of linearity of Dlb 

084XC5 10  (48) 0 (171,917) 
D13S126 9 (56) 0 (241,251) 
D13S119 14  (69) 0 (376,667) 
D13S118 7 (99) 0 (796,667) 
D13S125 15 (79) 0 (500,001) 
D13S144 9 (98) 0 (780,251) 
1523 5 (91) 0 (670,001) 
ACTC 14  (48) 0 (171,917) 
D15S171 8 (61) 0 (290,001) 
D15S169 11  (80) 0 (513,251) 
Dl  3S133 35 (93) 82,001  (700,667) 
D13S137 12  (60) 0 (279,917) 
D13S227 16  (81) 1,251 (526,667) 
FES 12 (82) 0 (540,251) 
GABRB3 10  (99) 0 (796,667) 
D13S192 14 (58) 0 (260,251) 
D13S193 11 (74) 0 (436,251) 
HLIP 7 (86) 0 (596,251) 
D 15S98 17  (86) 4,001 (596,251) 
D15S97 15  (91) 0 (670,001) 
D15S100 15  (65) 0 (332,001) 
D15S101 12  (68) 0 (365,251) 
D13S115 9 (89) 0 (640,001) 
D 15S95 9 (74) 0 (436,251) 
D15S108 12  (80) 0 (513,251) 
D15Sll 9 (41) 0 (120,001) 
D15S102 11  (58) 0 (260,251) 
D15S117 12  (74) 0 (436,251) 
D15S148 10  (74) 0 (436,251) 
p43R 13  (131) 0 (1,410,001) 

" The first range was calculated  as  the maximal allele  score 
- minimal allele  score.  The  range in parentheses is the 
maximal allele score - 2. 
' Duration  expressed as no. of generations. 

mal repeat scores at  that locus. The second  range (in 
parentheses) assumes that all loci have a  minimum re- 
peat score of 2 and calculates the  range as the differ- 
ence between the maximal repeat score and 2. (Two 
was chosen as the  minimum  required to trigger the 
increased  rate of mutation associated with tandem re- 
peats.) The ranges were used to predict  the  duration of 
linearity, assuming a  population size  of 10,000 diploid 
individuals and a  mutation  rate of 

Note that there  are two sources of error in estimating 
the allelic range. The first is due to the fact that, unless 
R is  very small, a population will not include all  possible 
alleles. Second, we have  available  only a sample from the 
actual population. Both of these errors result in underesti- 
mation, which means that  the biological upper limits on 
repeat scores are likely  to  be  substantially larger than those 
reported here. In addition, the assumed mutation rate is 
too high for some microsatellites. 

Although a number of strong assumptions were made 
in  producing  the estimates of the  duration of linearity 
in  Table 1, the results suggest that (at least some) mi- 
crosatellite loci may be useful for resolving distances as 
far back  as  several million years. Furthermore,  the  great 
variation in allelic range  among loci  suggests that it 
might be necessary to select only those loci  with  many 
alleles to study more distantly related taxa. This raises 
the  more  general  question of  how best to combine in- 
formation across loci. 

Multiple loci: We developed the average squared dis- 
tance for  a single locus, but its expectation remains 
linear when it is applied to many loci, even if the muta- 
tion rate varies across loci. In this case, the slope of 
E [ Dl ] becomes the  arithmetic average of the  mutation 
rates across the loci. However, the loci will not be 
equally informative. More polymorphic loci will provide 
a  more reliable signal over a  longer  period of time. 
Ideally, to combine  information across loci, a variance 
weighting approach similar to that described in 
GOLDSTEIN and POLLOCK (1994) would be desirable. 
However, deriving the variance of Dl (and  an estimator 
for this variance) is not trivial,  especially  if one also 
considers constraints on  repeat score, which are obvi- 
ously critical for  determining  a  good weighting. In  a 
subsequent  paper we  will address the  problem of 
weighting. For  now, the fact that Dl remains  linear when 
averaged over  loci  with different  mutation rates seems 
sufficient grounds to motivate  its  use on multi-locus 
data sets. 

Details of the mutation process: As pointed out by 
many authors  (HENDERSON and PETES 1992;  SCHLOT- 
TERER and TAUTZ 1992)  and emphasized by SLATIUN 
(1995), the  mutation process at microsatellite loci is 
not memoryless. That is, when a  mutation occurs the 
new mutant is related to the allele from which it was 
derived. In this case the difference in  length between 
alleles contains phylogenetic information. The statistics 
developed here  and those developed by SLATKIN 
( 1995) were designed to include this information and 
are equivalent except  that Slatkin takes a  ratio of combi- 
nations of the Ds to eliminate  the  parameters of the 
mutation process. This is necessary to estimate the ac- 
tual value of  demographic parameters. The confound- 
ing of time and mutation rate  does  not  present  a prob- 
lem for  the estimation of phylogenetic relationship, 
however, because all we need is a  linear  function of 
that time. Thus, we use D, directly as a phylogenetic 
distance measure. 

In deriving and evaluating the statistics reported 
here, we assumed a strict stepwise mutation process, 
which probably does not hold  for many microsatellite 
loci ( DI RIENZO et al. 1994; SHRIVER et al. 1993). This 
assumption is not a  problem with respect to the expecta- 
tion of our distance. SLATKIN'S (1995) results show that 
the statistic Dl will remain  linear if the mutation  model 
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is relaxed to include mutations of larger effect. Instead 
of a distance measure with slope p, where p is the aver- 
age mutation rateacross loci, the distance measure 
would  have slope pa:. However, the variances of Dl, 
DAs and DSwill depend  on the exact details of the muta- 
tion process, and  the relative performance of the dis- 
tances will therefore  depend on those details. 

In fact, it is clear that  the average squared distance 
will do progressively  worse  as the  mutation model be- 
comes more like the infinite alleles model. Under  the 
infinite-alleles model, we  know that Nei's distance is 
linear  and  that  the average square includes information 
that is not related to time since common ancestry (al- 
lelic repeat  score) . Thus,  the average square must be 
noisier and will perform worse.  For a mixed model, 
we can assume that as the  proportion of single-step 
mutations is reduced (and the  proportion of arbitrary 
size goes u p ) ,  the performance of the average square 
relative to Nei's distance will decline. 

A potentially more serious complication is that  the 
mutation process may depend  on  the  repeat score. If 
this dependence were strong, the results reported  here 
would not be relevant. In particular, it might be inap- 
propriate to consider a  repeat score of 2 as a reflecting 
boundary (WALSH 1987), and, more generally, if the 
mutation rate  depends  on  the  repeat score, Dl  may not 
be linear. 
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APPENDIX 

To derive the expectation of Dl as a  function of time, 
define Eg as the single generation expectation operator. 
Then write 

E,[Dl( t )  1 
= (2N)- 'Eg[C ( i -  i ' ) 2 n i ( t ) n i , ( t ) ] ,  ( A l )  

where the  prime indicates the second population, and 
the sum is over  all i, i'. Following MORAN (1975) ,  de- 
note ( 2 N )  -' Xi in, ( t )  as MI ( t )  and ( 2 N )  -' X, i'ni ( t )  
as M2 ( t )  . Then,  add  and subtract squared means to 
get, 

Eg[Dl ( t ) l  = E g [ M z ( t )  - Ml(t)'I 

+ Eg[M;(  t )  - M ; ( t ) ' ]  - 2(2N)- 'Eg  

X [ ii'nt ( t )  n: ( t )  ] + EgMl ( t )  ' + EgMI ( t )  ' (A2)  

= E g [ V ( t )  + V ' ( t ) ]  

+ Eg[(M'(t) - W ( t ) ) ' I ,  (A3) 

where V (  t )  is the variance in allelic repeat  number  at 
time t .  Then substitute MOW'S (1975) equations  for 
the sampling and mutation process (his Equations 6 
and 7 )  to  get 

E,[D1( t ) ]  = (1  - iN)(M,(t- 1) - M,(t- 1 ) 2 )  

+ (1  - ; N ) p +  (1 -iN)(M;(t- 1) 

- M I 2 ( t -  1 ) )  + (1 - ; N ) p  + (1 - iN)M1 

1 x ( t -  1 ) 2 + -  n/r , ( t -  1)  + -  P 
2N  2N 

+ (1 - i N ) M ; ( t -  1 ) * + -  M ; ( t -  1 )  
1 

2N 

+" 2 M 1 ( t -  l ) M ; ( t -  1 ) .  (A4) P 
2N 

Rewriting  in terms of the variances in the previous 
generation, we have 
E g [ D 1 ( t ) ]  = ( 1  - i N ) ( V ( t -  1)  + V ' ( t -  1 ) )  

+ 2 ( 1   - 4 N ) p  + ( 1  - t N ) M l ( t -  1 ) '  

+ - -  2 M , ( t -  l ) M i ( t -  l ) ,  (A5) CL 
2N 

which  simplifies to 
E g [ D 1 ( t ) ]  = V ' ( t -  1)  + V ( t -  1 )  

+ 2p + M,(t- l ) ' +  M f ( t -  1 ) 2  

- 2 M 1 ( t -  l ) M ; ( t -  1 ) .  (A6) 
Then, noting  that Dl ( t  - I )  = V (  t - 1)  + V ' (  t - 1 )  
+ (Ml(t- 1) - M ; ( t -  l ) ) ' , w e  have 

E,[ Dl ( t )  3 = Dl ( t - 1 ) + 2p. (A7 1 
Now, define E as expectation over multiple generations. 
Then, the average squared difference between  alleles 
drawn from populations isolated T generations ago is 
given by 

E [ D l ( t ) ]  = D o ( 0 )  + 72p.  (A8 1 
Assuming the  population was at equilibrium when sepa- 
ration occurred, we have, 

E [ D , ( t ) ]  = 2 ( 2 N -  1 ) ~  + 72p.  (A9) 


